Rotary Measuring Technology Incremental shaft encoder Housing and shaft made of stainless steel

Heavy duty Type ESI 90N

- Designed for heavy duty
- IP 66
- Sealed connector (also unplugged IP 67)
- Highly flexible, chemical resistant PURcable (stands up under constant trailing at -20 °C up to 70 °C)
- Temperature and ageing compensation
- Precision graduation at high resolution
- Large temperature range

- Short-circuit proof outputs
- (available as explosion proof zone 2 and 22

Applications: steel industry forestry, road and wood industry

Mechanical characteristics:

Speed:	max. 6000 min ⁻¹
Rotor moment of inertia:	approx. 15 x 10 ⁻⁶ kgm ²
Starting torque:	< 0.05 Nm
Radial load capacity of shaft*:	140 N
Axial load capacity of shaft:*:	70 N
Weight:	approx. 1.2 kg
Protection acc. to EN 60 529:	IP 66
Working temperature:	-20° C +85 °C ¹⁾²⁾
Operating temperature:	-20° C +90 °C ¹⁾²⁾
Shaft:	stainless steel
Shock resistance acc. to DIN-IEC 68-2-27	1000 m/s2, 6 ms
Vibration resistance acc. to DIN-IEC 68-2-6:	100 m/s ² , 102000 Hz

^{*} View also diagrams on page 21

Pulse rates available at short notice:

10, 20, 25, 30, 50, 60, 100, 120, 125, 127, 150, 180, 200, 216, 240, 250, 254, 256, 300, 314, 360, 375, 400, 500, 512, 600, 625, 720, 745, 750, 762, 800, 900, 927, 1000, 1024, 1250, 1270, 1400, 1500, 1800, 2000, 2048, 2250, 2400, 2500, 3000, 3600, 4000, 4096, 5000

Other pulse rates on request

Electrical characteristics:

Output circuit:	RS 422 (TTL-compatible)	Push-pull
Supply voltage:	5 V (±5 %) or 10 30 V DC 10 30 V DC	
Power consumption (no load)	-	typ. 55 mA/
without inverted signal:		max. 125 mA
Power consumption (no load)	typ. 40 mA /	typ. 80 mA/
with inverted signals:	max. 90 mA	max.150 mA
Permissible load/channel:	max. ±20 mA	max. ±30 mA
Pulse frequency:	max. 300 kHz	max. 300 kHz
Signal level high:	min. 2.5 V	min. U _B -2.5 V
Signal level low:	max. 0.5 V	max. 2.0 V
Rise time t _r	max. 200 ns	max. 1 µs
Fall time t _f	max. 200 ns	max. 1 µs
Short circuit proof outputs:1)	yes ²⁾	yes
Reverse connection protection at UB:	5 V: no,	yes
_	10 30 V: yes	
Conforms to CE requirements acc. to EN 61000	0-6-1, EN 61000-6-4 and EN 61000-6-3	

¹⁾ If supply voltage correctly applied

2) Only one channel allowed to be shorted-out:

(If UB=5 V, short-circuit to channel, 0 V, or +UB is permitted)
(If UB=5-30 V, short-circuit to channel or 0 V is permitted)

^{1) 80 °}C with cable

²⁾ Non-condensing

Rotary Measuring Technology Incremental shaft encoder

Heavy duty Type ESI 90N

Terminal assignment

Signal:	0 V	0 V	+U _B	+U _B	Α	A	В	B	0	0	Shield
		Sensor ²⁾		Sensor ²⁾							
12 pin plug: Pin:	10	11	12	2	5	6	8	1	3	4	PH ¹⁾
Colour:	WH	WH	BN	BN	GN	YE	GY	PK	BU	RD	
	0.5 mm ²		0.5 mm ²								

¹⁾ PH = Shield is attached to connector housing

Insulate unused outputs before initial startup.

Dimensions

Top view of mating side, male contact base:

Sensor cables are connected to the supply voltage internally if long feeder cables are involved they can be used to adjust or control the voltage at the encoder

⁻ If sensor cables are not in use, they have to be insulated or 0 VSensor has to be connected to 0 V and $\rm U_{BSensor}$ has to be connected to $\rm U_{B}$

⁻ Using RS 422 outputs and long cable distances, a wave impedance has to be applied at each cable end.